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Purpose: Intensity modulated proton therapy (IMPT) is highly sensitive to range uncertainties and

uncertainties caused by setup variation. The conventional inverse treatment planning of IMPT opti-

mized based on the planning target volume (PTV) is not often sufficient to ensure robustness of

treatment plans. In this paper, a method that takes the uncertainties into account during plan optimi-

zation is used to mitigate the influence of uncertainties in IMPT.

Methods: The authors use the so-called “worst-case robust optimization” to render IMPT plans ro-

bust in the face of uncertainties. For each iteration, nine different dose distributions are com-

puted—one each for 6 setup uncertainties along anteroposterior (A-P), lateral (R-L) and

superior–inferior (S-I) directions, for 6 range uncertainty, and the nominal dose distribution. The

worst-case dose distribution is obtained by assigning the lowest dose among the nine doses to each

voxel in the clinical target volume (CTV) and the highest dose to each voxel outside the CTV. Con-

ceptually, the use of worst-case dose distribution is similar to the dose distribution achieved based

on the use of PTV in traditional planning. The objective function value for a given iteration is com-

puted using this worst-case dose distribution. The objective function used has been extended to fur-

ther constrain the target dose inhomogeneity.

Results: The worst-case robust optimization method is applied to a lung case, a skull base case,

and a prostate case. Compared with IMPT plans optimized using conventional methods based on

the PTV, our method yields plans that are considerably less sensitive to range and setup uncertain-

ties. An interesting finding of the work presented here is that, in addition to reducing sensitivity to

uncertainties, robust optimization also leads to improved optimality of treatment plans compared to

the PTV-based optimization. This is reflected in reduction in plan scores and in the lower normal

tissue doses for the same coverage of the target volume when subjected to uncertainties.

Conclusions: The authors find that the worst-case robust optimization provides robust target coverage

without sacrificing, and possibly even improving, the sparing of normal tissues. Our results demon-

strate the importance of robust optimization. The authors assert that all IMPT plans should be robustly

optimized. VC 2012 American Association of Physicists in Medicine. [DOI: 10.1118/1.3679340]
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I. INTRODUCTION

Intensity modulated proton therapy (IMPT) is a powerful

tool to design and efficiently deliver highly conformal

and homogeneous dose distributions to the target, while at

the same time sparing the adjacent organs at risk (OARs) to

a greater degree compared to either intensity modulated

x-ray therapy (IMRT) or passively scattered proton therapy

(PSPT).1,2 This is made possible due primarily to the flexi-

bility of arbitrarily setting nonuniform intensities of

“beamlets” of a sequence of energies of multiple beams inci-

dent from different directions. A beamlet in our terminology

is a thin scanning pencil beam of protons entering and exit-

ing from the nozzle and incident on the patient. The largest

fraction of the dose due to each beamlet is deposited around

its terminal end in a region called the “spot.” In this paper,

we will use the term spot and beamlet interchangeably.

The intensity distributions for each of a group of beams

are derived using standard inverse treatment planning techni-

ques that optimize an objective function with respect to the

intensities of individual beamlets. Various strategies have

been proposed for designing IMPT plans.3 The two most

prominent ones are (1) the single field uniform dose method

and (2) 3D intensity modulation. In the former, intensities of

beamlets of each beam are optimized individually without

considering other beams, with the objective of producing,

per beam, uniform dose distribution within the target vol-

ume, and minimum dose outside. We call this method

“single field optimized” IMPT, or SFO-IMPT. [SFO is often

referred to as single field uniform dose (SFUD) optimiza-

tion.] In the latter, intensities of all beams are optimized

simultaneously to balance the dose and dose-volume objec-

tives of normal tissues and the target volumes. We call this

method “multifield optimized” IMPT, or MFO-IMPT, and it

is the proton spot scanning equivalent of IMRT. For obvious

reasons, it has the greatest flexibility to produce optimum

dose distribution patterns, especially for complex anatomic

geometries. The work reported in this publication is focused

on the MFO-IMPT. For brevity, we will use the term IMPT

to refer to MFO-IMPT in the remainder of the document

unless otherwise necessary for clarity.
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The effectiveness of IMPT may be greatly diminished by

range and patient setup uncertainties.4–10 Range uncertain-

ties arise from multiple sources, such as CT number uncer-

tainties, tumor shrinkage, patient weight gain or loss, and

conversion from CT numbers to stopping powers. Appreci-

able degradation of the delivered dose distributions may also

occur from setup uncertainties due to the misalignment of

incident beams and the patient anatomy and due to the

realignment of internal heterogeneities among themselves

and with respect to the target volume. Intrafractional organ

motion, e.g., in the proton therapy of lung cancer, may also

cause significant changes in patient geometry11 and conse-

quently to dose distributions. These uncertainties mean that

the delivered IMPT dose distribution may be quite different

from what is seen on the treatment plan, may be of question-

able reliability and may lead to unforeseen outcomes.

For MFO-IMPT, the intensities of spots placed in the target

volume and the corresponding dose distributions per beam

are, in general, highly inhomogeneous. In many situations,

beamlets from a given beam direction may not even reach the

distal edge of the target. Inhomogeneous dose distributions

within the target for individual beams are compensated for by

dose deposited by beamlets from other directions. Therefore,

the uncertainties in range may lead to either overshooting,

i.e., beamlets producing hot spots in the target volume, or

undershooting, i.e., beamlets producing cold spots. This

makes IMPT even more sensitive to uncertainties.4

In conventional photon radiotherapy (3D conformal or

IMRT), setup uncertainties are handled by adding margins

around the clinical target volume (CTV) to form a planning

target volume (PTV). The PTV margin is chosen with the

implicit assumption that the CTV will remain covered with

the prescribed isodose surface with high probability (e.g.,

95%) in the presence of uncertainties. This is a good

assumption for photons since, as pointed out by Meleike

et al.,12 the spatial nature of photon dose distributions is

minimally perturbed by uncertainties. In other words, a pho-

ton dose distribution is relatively robust in the face of uncer-

tainties. Meleike et al. have used the term “static dose

cloud” to describe a photon dose distribution.

For proton therapy, dose distributions are affected signifi-

cantly by various factors mentioned above,1,11,13,14 which

significantly perturb dose distributions not only distally and

proximally from the target volume but also within it and, as

a result, affect the robustness of proton dose distributions.

Presence of complex heterogeneities in the path of protons

could further exacerbate the perturbation of dose distribu-

tions. The traditional concept of PTV with setup uncertainty-

based expansion of the CTV is not applicable to proton ther-

apy. Proton dose distributions are not appreciably affected

by rigid body shifts along the beam direction, but they are

affected by lateral shifts and by anatomic variations. For

PSPT, an effective method to reduce the impact of uncertain-

ties, especially for relatively homogeneous anatomies (e.g.,

prostate), is the use of appropriate beam-specific distal and

proximal margins (coupled with smearing of range compen-

sators). The lateral margins used are the same as those

for defining the traditional PTV for photon therapy. It is

commonly assumed that the same practice is appropriate for

SFO-IMPT, although there is no equivalent of smearing in

SFO. However, because of the arbitrarily irregular beamlet

intensity distributions within the target volumes for MFO-

IMPT, the practice of assigning beam-specific distal and

proximal margins is not meaningful.

In the absence of a suitable method to account for uncer-

tainties, the current, though unsatisfactory, practice of MFO-

IMPT has been to expand the CTV into traditional PTV

(Ref. 15). In the context of this approximation, it is assumed

that anatomic changes and tumor motion have a negligible

impact on the dose distribution in space.8 The resulting dose

distributions may be significantly deficient in robustness,

i.e., the dose distribution actually delivered may be quite dif-

ferent from what is planned.4 This lack of robustness leads

to a lack of confidence in the dose distributions seen on the

MFO-IMPT plans even though they are often the best that

can be achieved with proton therapy. Concern about robust-

ness has been an impediment in the broader clinical use of

MFO-IMPT. Therefore, the development of suitable meth-

ods to improve robustness (i.e., robust optimization) is vital

to exploit the full potential of this important modality.

There are several published reports on robust optimization

of MFO-IMPT. Probabilistic and robust linear programming

approaches have been proposed for both an idealized two-

dimensional geometry to account for range uncertainties9 and

a clinical paraspinal case to account for both range and setup

uncertainties.8 Similarly, a robust optimization approach

based on the so-called “worst-case dose distribution”

(described in Sec. II) was applied in a clinical case (for a tu-

mor near the spinal cord) by Pflugfelder et al.7 Most recently,

Fredriksson et al.16 have reported a study using “minimax”

optimization to incorporate range and setup uncertainties in

IMPT. In order to make the optimization process tractable for

clinically relevant cases, a nonlinear constrained program is

used in their implementation. Their implementation is com-

putationally demanding and requires an optimization solver

that can deal with nonlinear constraints. The resulting treat-

ment plans showed reduced sensitivity to uncertainties.

In this report, we have used an approach similar to the

one used by Pflugfelder et al.7 A modification of the objec-

tive function to penalize hot spots within the target, which

could potentially occur due to range uncertainties, leads to

improved target dose homogeneity. We have applied this

method to a number of clinical cases and demonstrate that it

leads to MFO-IMPT dose distributions that are considerably

less sensitive to setup and range uncertainties than the tradi-

tional PTV-based optimization. Only one illustrative case

each of nonsmall cell lung cancer (NSCLC), base-of-skull

(BOS), and prostate cancer are presented in this paper. An

important finding of our work is that robust optimization

may also result in improved quality of plans in terms of

greater sparing of normal tissues and more homogeneous tar-

get dose distributions. It is important to recognize that, since

robust optimization and PTV-based optimization (or other

traditional methods) incorporate uncertainties differently,

comparison of results must utilize plans that incorporate

uncertainties in the same manner.
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We should mention that MFO-IMPT, in particular robust

optimization, is highly CPU time and memory intensive. To

achieve acceptable optimization time and to meet memory

requirements, we parallelized computations in the beamlet

domain using memory-distributed parallelization on a large

multiprocessor system. A compressed sparse matrix format

is used to save the memory usage for every processor. Work

on improving the storage and computational efficiency is

continuing and will be reported in a separate publication.

The remainder of the paper is organized as follows. In

Sec. II, we introduce the worst-case robust optimization

algorithm, patient data, beam configurations, and robustness

quantification technique. In Sec. III, we describe application

of robust optimization to three clinical cases to demonstrate

the efficacy of the method. Interpretation of results and the

discussion of principles explaining our observations, includ-

ing improved OAR sparing achieved by robust optimization

compared to the PTV approach are given in Sec. IV. Finally,

we conclude in Sec. V.

II. METHODS

The focus of this work is to evaluate the effectiveness of

an approach to robust optimization of MFO-IMPT by com-

paring its results for a set of clinical cases with the optimiza-

tion using the traditional “PTV-based” approach.

II.A Worst-case robust optimization algorithm

In the following description of our method, the intensity,

i.e., weight, of beamlet j is denoted by the non-negative

quantity x2
j . Thus, the constrained optimization problem

with respect to weights is turned into an unconstrained one

of optimizing the square root of the beamlet weights instead

of optimizing the beamlet weight directly. The weight array

x2
j (or the intensity map) is optimized by minimizing the

objective function.

For the PTV-based MFO-IMPT optimization, we used the

standard quadratic objective function employed commonly

for conventional IMRT planning.17–19 The PTV-based opti-

mizations do not consider range uncertainties. It considers

setup uncertainties implicitly as they are incorporated into

the PTV definition but ignores the perturbation of dose dis-

tributions caused by them. As is done conventionally for

IMRT planning, the PTV-based method optimizes dose dis-

tribution in the PTV taking into consideration normal tissue

constraints. The objective function used is given by

FPTVðxjÞ ¼
X

i2PTV

pPTVðDi�D0;PTVÞ2

þ
X

i2OARs

pOARsHðDi�D0;OARsÞðDi�D0;OARsÞ2;

(1)

where p terms denote the penalty weights of the correspond-

ing terms and D0 terms are the prescribed doses or con-

straints for the corresponding organs. The Heavyside

function HðDi � D0Þ is defined conventionally, i.e., it is

unity if Di > D0 but zero if Di � D0. The dose Di at the

voxel i can be calculated as Di ¼
P

j
ki;jx2

j , where the influ-

ence matrix (or the dose deposition coefficient) ki;j is calcu-

lated using an in-house dose calculation engine for proton

pencil beams of a finite size.20,21 In our current study, we

used only dose constraints, which were adjusted by trial and

error to meet the dose-volume constraints used in our clinic.

Dose-volume constraints may be incorporated using the

method described by Wu and Mohan,18 which we plan to do

in our future studies.

As may be obvious, the definition of PTV for photons is

intended to effectively make photon dose distributions in the

CTV robust in the face of uncertainties. During the course of

treatment the CTV is expected to reside within the PTV. The

PTV dose distribution and dose-volume histogram represents

the “worst that can happen” to the CTV. The same does not

hold for protons in part because of range uncertainties and in

part because of the fact that proton dose distributions are per-

turbed by uncertainties.22 However, a corresponding “worst-

case” dose distribution, the PTV dose distribution analog for

protons, can be defined. Furthermore, MFO-IMPT can be

optimized based on worst-case dose distribution, the results

of which will ostensibly be robust in the face of uncertainties.

Following the strategy published by Lomax,23 a simple

worst-case dose distribution may be computed as follows:

For the same beam arrangement, the nominal dose distribu-

tion (i.e., without consideration of uncertainties) and dose

distributions incorporating (1) setup uncertainties by shifting

the patient’s CT image, and (2) range uncertainty by scaling

the nominal beamlet ranges by þ/� range uncertainty (e.g.,

3.5%) are computed. For incorporating setup uncertainties,

the isocenter of patients is shifted along anteroposterior (A-

P), superior–inferior (S-I), and lateral (R-L) directions yield-

ing six dose distributions and the corresponding influence

matrices. For range uncertainties, stopping power ratios are

modified by �3.5% and 3.5% to generate two additional

influence matrices, corresponding to maximum and mini-

mum proton ranges respectively. The worst-case dose distri-

bution is then represented by the minimum of the nine doses

in each voxel in the CTV and the maximum of the nine doses

in each voxel outside the CTV. Note the use of CTV for the

worst-case dose distribution calculations instead of the PTV.

The worst-case dose distribution is not physical but it serves

as a lower bound for the worst possible treatment plan.7

For robust optimization, an objective function FRobustðxjÞ
similar to the one in expression (1) is used

FRobustðxjÞ ¼
X

i2CTV

pCTV;minðDi;min � D0;CTVÞ2

þ
X

i2OARs

pOARsHðDi;max � D0;OARsÞ

� ðDi;max � D0;OARsÞ2: (2a)

Note again that in robust optimization, the optimization tar-

get is the CTV. The terms Di;min ¼ min
m
ðDm

i Þ and Di;max

¼ max
m
ðDm

i Þ indicate the minimum and maximum dose

among m (¼9) possible doses Dm
i in voxel i, which are calcu-

lated using Dm
i ¼

P
j

km
i;jx

2
j in each iteration. The m influence
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matrices km
i;j, incorporating range and setup uncertainties, are

precalculated. Pflugfelder et al.7 used the same worst-case

dose distribution concept in their robust optimization imple-

mentation and demonstrated that it led to plans with reduced

sensitivity to uncertainties. However, uncertainties may lead

to hot spots (e.g., due to beamlet range overshoot) in the tar-

get, which may not be adequately controlled by the objective

function (2a). While hot spots may be acceptable for some tu-

mor sites (e.g., small tumors of the lung and brain), in general

they are considered undesirable. To minimize such hot spots,

we have introduced another term in the objective function

FRobustðxjÞ ¼
X

i2CTV

pCTV;minðDi;min � D0;CTVÞ2

þ
X

i2CTV

pCTV;maxðDi;max � D0;CTVÞ2

þ
X

i2OARs

pOARsHðDi;max � D0;OARsÞ

� ðDi;max � D0;OARsÞ2: (2b)

One could argue that the first term in this expression con-

strains both hot and cold spots as is the case in conventional

optimization. In robust optimization using worst-case dose

distribution, it affects only the minimum in each target

voxel. The second term is necessary in order to constrain the

maximum dose in each target voxel.

As with some other methods of robust optimization,7,8,16

our method considers both range and setup uncertainties. An

assumption implicit in the worst-case optimization method is

that each uncertainty affects dose distribution independently.

In reality, the dose distributions may be affected simultane-

ously by multiple changes in position and range. Second, the

computation of worst-case dose distributions employing the

maximum values of the setup and range changes assumes

that these occur by the same magnitude for every fraction. In

reality, there is a distribution of setup variations. Both of

these assumptions lead to results that may be conservative in

terms of target coverage and normal tissue sparing. How-

ever, they are consistent with the use of PTV in photons.

II.B. Patient data

We applied our robust optimization method to three clini-

cal cases: one lung (stage III B nonsmall cell lung cancer),

one BOS (clivus chordoma), and one prostate (adenocarci-

noma) (Table I). For the lung case, three beams in the trans-

verse plane at gantry angles of 180�, 230�, and 320� were

used. Setup uncertainties of 65 mm and range uncertainty of

63.5% of the beams’ nominal ranges were assumed (Table

I). For the BOS case, two beams in the transverse plane at

gantry angles of 75� and 270� and one beam at gantry angle

of 300� and couch angle of 90� were used. The setup and

range uncertainties were assumed to be 63 mm and 63.5%

respectively (Table I). For the prostate case, two beams in the

transverse plane at gantry angles of 90� and 270� (parallel-

opposed fields) were used. Setup uncertainties of 65 mm and

range uncertainty of 63.5% of the beams’ nominal ranges

were assumed (Table I). The dose grid resolutions for the

three cases were 2.5, 2.5, and 1.0 mm, respectively.

For PTV-based optimization, in general, the CTV-to-PTV

margins are the same as those used for conventional IMRT

planning. For robust optimization, there is no CTV-to-PTV

margin; however, as explained above, the dose distributions

are calculated by shifting the beam configuration through

setup uncertainties and changing the ranges.

For both PTV-based and robust optimization, a margin

for “penumbra” is added to allow for the lateral fall-off of

dose. CTV-to-PTV margin is only for uncertainties. In the

design of treatment plans, an additional margin is assigned

for penumbra to ensure that the PTV is covered with the pre-

scribed dose (or to an acceptable level, e.g., 95% of the pre-

scribed dose). For IMRT or IMPT, this margin is usually

smaller than the margin that would be required for 3D pho-

ton or proton treatments. This is due to the fact that intensity

modulation has the ability to increase the fluence in the

boundary regions to sharpen the penumbra. IMRT and IMPT

penumbra margins are determined empirically and can be

functions of number of beams and tumor characteristics.

Based on the requirements and characteristics of our scan-

ning beams, which use the discrete spot scanning mechanism

to deliver IMPT, spots are placed uniformly within the mar-

gin for the penumbra at selected spacing. IMPT is delivered

energy-layer-by-energy-layer. The number of energy layers,

selected from a discrete set characteristic of our delivery sys-

tem, depends on the depth and the dimension of the target

along the beam path.

Table II shows the spot scanning characteristics of each

of the beams used for each example shown in this paper. The

penumbra margin is selected based on the average energy,

which determines the size of the spot at the surface of the

patient and at depth. The r of the incident spot in our system

varies from approximately 5 mm for the highest energy (222

MeV) to approximately 12 mm for the lowest (72 MeV).

The spot size increases further in the medium to approxi-

mately 8 mm for the highest energy and to 13 mm for the

lowest energy. For the BOS case, a bolus of approximately

10 cm was used to reduce spot size and the number of energy

layers. This should explain the larger range uncertainties in

Table I and the higher energies and relatively small number

of energy layers in Table II for the BOS.

TABLE I. Margins used for PTV-based and robust optimization.

Case

Optimization

method

PTV and lateral

margins (mm)

Range uncertainty

(field-specific) (mm)

Lung PTV-based 5 N/A

Robust 5 5.1

8.1

5.7

Base-of-skull PTV-based 3 N/A

Robust 3 8.9

7.8

8.6

Prostate PTV-based 5 N/A

Robust 5 8.0

8.1
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II.C. Robustness evaluation

It should be pointed out that the nominal dose distribu-

tions (i.e., without consideration of any uncertainties) from

the PTV-based optimized IMPT plans do not reflect the dose

distributions actually realized in the face of uncertainties. To

a considerably lesser degree, the same may be true of the

robustly optimized plan. Therefore, to compare the results of

PTV-based optimization and robust optimization, the uncer-

tainties must be incorporated into dose distributions, which

mean that the worst-case dose distributions must be com-

puted for both types of plans. We term this process robust-

ness evaluation.

III. RESULTS

In this section, three cases (one each of stage III NSCLC,

clivus chordoma and a cancer of the prostate) are selected to

illustrate our method. Plans were optimized using both the

PTV-based and robust approaches. To intercompare the

results of the two methods, robustness was quantified by

computing worst-case dose distribution for each approach.

In addition, families of DVHs for each uncertainty (e.g.,

setup, range) for all structures of interest were displayed

along with the nominal DVHs (i.e., without consideration for

uncertainties). The “bands” of DVHs are an effective means

to illustrate the sensitivity to uncertainty24—the wider the

band, the greater the sensitivity.

Figure 1 shows the DVH bands of the CTV, normal lung,

esophagus, and spinal cord for the lung case; Fig. 2 shows

the DVH bands of the CTV, brainstem, right temporal lobe,

and left temporal lobe for the BOS case and Fig. 3 shows the

DVH bands of the CTV, bladder, and rectum for the prostate

case. The PTV-based plan and robustly optimized plan were

optimized using the same dose constraints, the same penal-

ties, and the same initial conditions. The dose constraints

and penalties used in the robust optimization and robustness

evaluation are listed in Table IV. For fair comparison, we

renormalized plans for the lung and BOS cases to have at

least 98% of CTV covered by the prescription dose (74 Gy)

in the nominal dose distribution and changed other dose

distributions accordingly. It is apparent that the CTV DVH

bands are narrower for the robustly optimized plans than for

the PTV-based plans, indicating the reduced sensitivity of

the former to setup and range uncertainties, which is exactly

what the goal of robust optimization is. In addition, we

notice that the falloff of the CTV DVH bands is steeper, and

the maximum dose is lower for the robustly optimized plan.

This is presumably the consequence of the additional term in

Eq. (2b) to limit the maximum dose in each target voxel,

which promotes greater target dose homogeneity. This is fur-

ther illustrated in Fig. 4, which compares DVHs of the nomi-

nal dose distributions with and without constraints on the

maximum target voxel doses for the robust optimization for

the BOS case. The optimizer allowed higher doses in the tar-

get volume to achieve better normal tissue protection. The

homogeneity index (HI) is degraded from 9.9% to 14.9%

without the maximum dose constraint. The HI is defined as

the difference between the dose to 1% CTV volume and the

dose to 99% CTV volume, divided by the prescription dose

(74 Gy).

An interesting, and perhaps counterintuitive, finding is

that for both lung and BOS cases, sparing of normal tissues

is improved. One might expect that the robust optimization

would lead to treatment plans that reduce uncertainty to the

dose distribution in the CTV but at the cost of reduced nor-

mal tissue sparing. An explanation of this observation is

given in the Sec. IV.

Figures 5 and 6 show the transverse dose distributions for

the lung and BOS cases respectively. Panels (a) and (b) are

for the PTV-based plans and panels (c) and (d) are for the

robustly optimized plans. For the lung case, panels (a) and

(c) are for the nominal plans (i.e., without any uncertainties

considered), whereas in panels (b) and (d) the range uncer-

tainty (3.5% range overshoot) has been applied to all beams.

It is clear that the dose distribution in the robustly optimized

plan is essentially unaffected compared to the PTV-based

plan (note the red 74 and cyan 20 Gy (RBE) isodose lines).

For the BOS case, the patient is moved inferiorly by 3 mm.

The shift affects the PTV-based plan to a significantly

greater degree than the robustly optimized plan.

TABLE II. Beam parameters used in the optimization of IMPT plans.

Lung Penumbra margin (cm) Energy range (MeV) Number of layers Spot spacing (cm)

Field 1 0.6 84.7–146.9 49 0.5

Field 2 0.6 94.2–188.2 55

Field 3 0.6 88.8–155.3 48

Base-of-skull

Field 1 0.5 168.8–201.0a 14 0.5

Field 2 0.5 148.8–183.4a 16

Field 3 0.5 155.3–195.6a 18

Prostate

Field 1 1.2 148.8–190.5 19 0.5

Field 2 1.2 148.8–190.5 19

aFor the base-of-skull case, a bolus with water equivalence thickness of approximately 10 cm is used to reduce spot size and the number of energy layers.
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FIG. 1. Color wash represents the DVH bands for dose distributions covering all setup and proton range uncertainties for CTV and various organs for the

robustly optimized plan (right column) and the PTV-based plan (left) for the NSCLC case. The solid lines are the DVHs for the nominal dose distribution (i.e.,

without consideration of uncertainties). The narrowness of CTV band for the robustly optimized plan indicates improved robustness. At the same time, the

sparing for the esophagus, spinal cord, and normal lung is perceptibly improved.
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FIG. 2. DVH bands for dose distributions covering all setup and proton range uncertainties for CTV and various organs for the robustly optimized plan (right

column) and the PTV-based plan (left) for the base-of-skull case. As for the lung case, the solid lines are DVHs for the nominal dose distribution, and it is

apparent that the CTV coverage for the robustly optimized plans is less sensitive to uncertainties and the normal tissue sparing is improved.

1085 Liu et al.: Robust optimization of IMPT 1085

Medical Physics, Vol. 39, No. 2, February 2012



Figure 7 shows the transverse dose distributions for the

prostate case. Panel (a) is the PTV-based plan whereas panel

(b) is the robustly optimized plan. It is apparent that the pre-

scription isodose surface covers a larger volume in the for-

mer. In spite of smaller volume enclosed within the

prescription dose surface in the robustly optimized plan, the

CTV remains appropriately covered in the face of set-up

uncertainties as illustrated in panel (c), where the patient is

moved posteriorly by 5 mm; in (d), where the patient is

moved to the right by 5 mm; and in (e), where beam ranges

are decreased by 3.5%. Panel (c), (d), and (e) are all for the

robustly optimized plan. Thus, the robust optimization algo-

rithm makes the “effective” safety margin as small as neces-

sary to account for uncertainties around the CTV while

ensuring adequate coverage.

Table III compares total scores (values of objective func-

tion) and subscores of individual structures of the worst-case

dose distributions derived from the PTV-based and robustly

optimized plans. The subscores for the target (CTV/GTV)

are calculated using

FIG. 3. DVH bands for dose distributions for the prostate case with the solid lines indicating the nominal dose distribution. Robustness of prosate dose distribu-

tion and the sparing of the bladder and rectum are improved.
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ScoreTARGET¼
X

i2TARGET

pTARGET;minðDi;min�D0;TARGETÞ2

þ
X

i2TARGET

pTARGET;maxðDi;max�D0;TARGETÞ2;

(3a)

while the subscores for the OARs are calculated using

ScoreOAR ¼
X

i2OAR

pOARðDi;max � D0;OARÞ2: (3b)

The total score is the sum of the subscore of the targets

and OARs. The scores represent deviation from the individual

constraints. If a dose constraint is met, the subs-score would

be zero. Values of subscores depend on the values of the pen-

alty parameters and on the number of points in the structure.

Therefore, it is meaningful to compare subscores for different

optimization methods only for the same structure. The pen-

alty terms p and the dose constraints to the target and OARs

are listed in Table IV. In all cases the total scores for the

robustly optimized plans are lower than the corresponding

PTV-based plans. In addition, with the exception of optic

chiasm for the BOS case, subscores for CTVs and all normal

structures are lower for the robustly optimized plans, further

indicating that robust optimization not only makes CTV dose

distribution less sensitive to uncertainties but may also lead

to improved sparing of normal tissues.

IV. DISCUSSION

We reiterate that, due to the characteristics of proton dose

deposition (e.g., sharp distal fall-off and lateral scattering),

proton dose distributions are more sensitive to various forms

of uncertainties than photon dose distributions. For passively

scattered proton therapy, sensitivity to uncertainties is

reduced by the use of such techniques as smearing of com-

pensators and assignment of beam-specific distal and proxi-

mal margins. For scanning beam proton therapy using SFO,

distal and proximal margins are similarly assigned for range

uncertainty, but there is no equivalent of smearing other than

the finite spot size. Thus, SFO is more sensitive to uncertain-

ties than PSPT. For multifield, or 3D, optimization, energy

and fluence distributions are such that dose distributions per

beam within the target may be highly inhomogeneous. Dose

contributions due to individual beams are blended in such a

way that the sum of all beams results in the desired uniform

dose distributions in the target and the best possible compro-

mise in normal tissues. Although MFO dose distributions are

(apparently) the best in terms of optimality, they are also

predisposed to being perturbed in regions of junctions or

overlap and are, therefore, most sensitive to uncertainties.

IV.A. Rationale of optimization and evaluation of IMPT
plans using worst-case dose distributions

Conventional approaches for intensity modulated treat-

ment planning employing PTV cannot explicitly consider the

impact of range uncertainty per beamlet or compensate for

dose perturbation caused by changes in anatomy and setup.

In this paper, we have attempted to demonstrate that, with the

incorporation of setup and range uncertainties into the optimi-

zation process, one can reduce sensitivity of the resulting

treatment plans to uncertainties.

The robust optimization method we have chosen uses the

worst-case dose distribution to compute the objective function

FIG. 5. Dose distributions in the transverse plane for

the lung case illustrating that robustly optimized plan is

relatively insensitive to range uncertainty. Left panels:

PTV-based plans. Right panels: robustly optimized

plans. Top row: with nominal range. Bottom row: with

3.5% higher range. CTV: green color wash; spinal

cord: purple color wash.

FIG. 4. Comparison of base-of-skull case CTV, brainstem, whole brain,

optic chiasm, left temporal lobe, and right temporal lobe DVHs for the

robustly optimized plan with constraint on the maximum dose in each target

voxel [solid lines, Eq. 2(b)] vs without maximum dose constraint [dashed

lines, Eq. (2a)]. The constraint makes CTV dose distribution more homoge-

nous but at the cost of reduced normal tissue sparing.
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value in each iteration. Our method is similar to the method

used by Pflugfelder et al.7 and reinforces their findings with

regard to improved robustness of the resulting plans. Addi-

tionally, we have modified the worst-case objective function

to constrain target dose heterogeneity by limiting the maxi-

mum dose in each target voxel.

In general, without appropriate testing, it is not possible

to ascertain how robust an arbitrary IMPT plan is. Robust-

ness may depend on multiple factors including optimization

algorithm, severity of constraints, the number and directions

of beams, etc. However, it is important to reemphasize that,

when evaluating and comparing proton dose distributions, it

FIG. 6. Dose distributions in the transverse plane for

the base-of-skull case illustrating that robustly opti-

mized plan is relatively insensitive to set-up uncer-

tainty. Left panels: PTV-based plans. Right panels:

robustly optimized plans. Top row: nominal position.

Bottom row: with patient shifted inferiorly by 3 mm.

CTV: green color wash; brainstem: purple color wash.

FIG. 7. Panel (a) is the nominal dose distribution for

the PTV-based prostate plan. The remaining panels are

the dose distributions for the robustly optimized plan:

(b) nominal, (c) with patient shifted posteriorly by 5

mm, (d) shifted to the right by 5 mm, and (e) with

beam range decreased by 3.5%. Red is the prescription

isodose contour lines (76 Gy), green line is the PTV

and blue line is the CTV. Letters O and O’ indicate

original and shifted positions of the isocenter. Compari-

son of panel (a) with other panels illustrates that the

prescription isodose surface encloses a larger volume

for the PTV-based optimization vs robust optimization.

At the same time, the CTV remains covered with the

prescription dose in the face of uncertainties.
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is necessary to build robustness into the plan by incorporat-

ing the impact of uncertainties. We achieve this in our work

by computing the worst-case dose distributions for the com-

peting plans. This is analogous to the use of PTV for pho-

tons, which implicitly represents the worst-case dose

distribution for the CTV. The worst-case dose distribution

considers setup uncertainty not only for the target but also

for normal structures. Additionally, it considers range uncer-

tainty and, more importantly, perturbation of dose distribu-

tion. Worst-case dose distributions are also appropriate data

to be used when dose distributions are to be added, for

instance, when a part of the treatment is delivered with pho-

tons and the rest with protons, or when treatment plans from

different modalities are to be compared.

It should be mentioned that the method of comparison of

robustly and conventionally optimized plans we used is dif-

ferent from those used by many of the other investigators,7–10

who either designed the conventional plans based on CTV

and/or compared robustly optimized plans with CTV-based

plans. In this work the PTV is chosen as the target for the

conventional PTV-based plan, whereas the CTV is chosen as

the target for the robustly optimized plan. We then compare

the plan quality and robustness of these two plans. However,

in the previous work such as that of Pfugfelder et al.,7 the

CTV is used as the target for both conventional optimization

and robust optimization. Then, the plan quality and robust-

ness of the two plans are compared. We believe that the com-

parison of robustly optimized plan with CTV-based

optimized plan is not valid since the latter does not incorpo-

rate uncertainties.

The validity of worst-case techniques for plan evaluation

and for optimization may be questioned since it corresponds

to the maximum extent of uncertainty (more correctly to the

uncertainty that covers, say, �95% of the distribution). In

reality, the actual uncertainty over the course of therapy and

over the population of patients is represented by a distribu-

tion; and margins used for planning and evaluation are such

that, typically, there is a �95% probability that the target

will remain covered or that normal structures will be spared

adequately. The PTV-based planning and plan evaluation for

photons similarly assume this maximum extent of uncer-

tainty. For lack of better methods, PTV-based techniques

continue to be used in proton plan evaluation and in IMPT

optimization; however, their validity is limited.

The concept of PTV for photons and of worst-case dose

distributions for both protons and photons may also be

TABLE III. Comparison of the total score and subscores for individual anatomic structures for the worst-case dose distributions for the PTV-based and robustly

optimized plans. The subscores for the target (CTV/GTV) are calculated using Eq. 3(a), while the subscores for the OARs are calculated using Eq. 3(b). The

total score is the sum of the subscore of the targets and OARs. The scores represent deviation from the individual constraints. If a dose constraint is met, the

subs-score would be zero. Values of subscores depend on the values of the penalty parameters and on the number of points in the structure. Therefore, it is

meaningful to compare subscores for different optimization methods only for the same structure. The penalty terms p and the dose constraints to the target and

OARs are listed in Table IV.

Lung Total GTV CTV Heart Cord Esophagus Normal lung

PTV-based solution 5.58� 106 9.45� 105 2.18� 106 4.39� 105 1.29� 106 4.67� 105 2.61� 105

Robust optimization 3.86� 106 6.47� 105 1.83� 106 3.60� 105 4.15� 105 3.77� 105 2.27� 105

Base-of-skull Total CTV Optical chiasm Brain-CTV Brainstem R temporal lobe L temporal lobe Whole brain

PTV-based solution 8.72� 106 2.35� 106 1.10� 106 3.01� 105 2.84� 106 1.46� 106 1.55� 105 5.14� 105

Robust optimization solution 7.21� 106 2.16� 106 1.16� 106 2.59� 105 1.90� 106 1.18� 106 1.06� 105 4.47� 105

Prostate Total CTV Bladder Rectum Femoral heads

PTV-based solution 1.53� 106 9.04� 105 9.79� 104 1.67� 105 3.61� 105

Robust optimization 1.07� 106 5.04� 105 8.76� 104 1.57� 105 3.23� 105

TABLE IV. Penalty terms p and dose constraints D0 (Gy) used in robust optimization [Eq. 2(b)] and robustness evaluation [Eqs. 3(a) and 3(b)].

Lung

TARGET

constraint (min)

TARGET

constraint (max)

Heart

constraint

Cord

constraint

Esophagus

constraint

Normal lung

constraint

p 1.0� 105 1.5� 105 8.0� 102 6.0� 103 8.0� 102 8.0� 102

D0(Gy) 74 74 10 0 35 35

Base-of-skull

TARGET

constraint (min)

TARGET

constraint (max)

Optical chiasm

constraint

Brain–CTV

constraint

Brainstem

constraint

R temporal lobe

constraint

L temporal

lobe constraint

Whole brain

constraint

p 2.0� 105 2.0� 105 8.0� 102 2.0� 103 1.0� 104 2.0� 103 8.0� 103 3.0� 103

D0(Gy) 74 74 0 0 10 0 10 0

Prostate TARGET constraint (min) TARGET constraint (max) Bladder constraint Rectum constraint Femoral heads constraint

p 1.0� 105 1.0� 105 8.0� 102 8.0� 102 8.0� 102

D0(Gy) 76 76 40 40 5
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justifiable on biological grounds. Underdosing caused by

marginal misses or in-field dose perturbations in a small

number of fractions may lead to appreciable risk of local

failure. The CTV must receive the prescribed dose distribu-

tion for all or almost all the fractions.

IV.B. Optimality of plans and sparing of normal
tissues

We have applied our method to multiple clinical cases

and included one case each of lung, BOS and prostate in this

paper. An interesting general finding is that, with robust opti-

mization, compared to PTV-based optimization, not only is

the target dose distribution more robust in the face of uncer-

tainties, but the plan quality, particularly in terms of normal

tissue sparing is also improved. This may seem counter-

intuitive. There are three possible explanations for this

observation.

In robust optimization, the optimizer attempts to compen-

sate for perturbations caused by any of the uncertainties that

may lead to deviations in individual voxels from the pre-

scribed dose in the target or in exceeding the limits of nor-

mal tissues. This makes the target dose distribution less

sensitive to uncertainties and, when observed in the worst-

case scenario, to be more homogeneous and with greater nor-

mal tissue sparing. On the other hand, in the PTV-based

case, the worst-case dose distribution shows underdosing in

the target, and renormalization to achieve the required cover-

age may lead to increase in normal tissue doses.

Another factor may be that in PTV-based optimization,

spots are placed in a larger fixed PTV volume, whereas in

the worst-case robust optimization, the spots are placed in

the CTV, albeit in its multiple instances. This means that, in

the latter case, a larger volume of normal tissues is compet-

ing against a smaller volume of the target; and since there is

considerable degeneracy in the optimization process, the

optimizer is likely to achieve the desired CTV coverage at

increased normal tissue sparing. While the goal of PTV-

based optimization is to assure that the prescribed isodose

surface covers the PTV, the robust optimization may lead to

a reduced volume of the prescribed isodose surface that still

covers the CTV in the face of the uncertainties. This is illus-

trated for the prostate example in Fig. 7.

An additional point is that robust optimization considers

uncertainties for the target as well as for all normal struc-

tures, where as the PTV-based optimization considers only

the target. If the PTV-based optimization were to incorporate

planning volumes at risk (PRVs) also, the competition

between the target and organs at risk may also lead to addi-

tional sparing for the latter, but probably not to the same

extent as for robust optimization.

IV.C. Limitations of the worst-case approach to robust
optimization and robustness evaluation

Just like the use of PTV (and PRVs) for photons, the

worst-case approach as described here is a reasonable first

step in incorporating uncertainties in proton plan evaluation

and optimization. However, it is only an approximate

approach. For example, it assumes that interfractional varia-

tions are of rigid body type and does not consider deforma-

tions and changes in positions of anatomic structures relative

to each other. Second, it assumes that each uncertainty can

be considered independently of others. In reality, multiple

uncertainties can occur simultaneously. For instance, the

patient’s position may shift along A-P, H-F, and R-L direc-

tions, and range uncertainty may exist simultaneously. It is

possible to simultaneously consider all uncertainties by sam-

pling them from distributions, but it would require the com-

putation of a very large number of dose distributions, which

may not be practical for routine use. Nevertheless, it would

be appropriate in a future study to carry out such computa-

tions for a small number of cases to assess the consequences

of treating the uncertainties as being independent of each

other.

In principle, the methodology described in this paper can

also be extended to incorporate uncertainties related to intra-

fractional respiratory motion. One could include the dose

distributions corresponding to maximum inhale and maxi-

mum exhale images in the family of dose distributions used

to compute worst-case dose distributions. It is important to

note, however, that deformations of anatomy caused by res-

piration would need to be explicitly considered for each of

nine dose distributions.

In spite of these limitations, we believe that the method

described here is a practical step in the right direction.

V. CONCLUSIONS

In this paper, we have demonstrated that robust optimiza-

tion of IMPT plans based on worst-case dose distributions

improves robustness and at the same time improves sparing of

normal tissues compared to conventional methods of optimi-

zation based on PTV. Before comparing dose distributions of

different methods, it is, however, essential to incorporate

uncertainties in the resulting plans. Our results confirm the

findings of other investigators with regard to improved robust-

ness. The addition of this term, along with our optimization

approach leads to improvement in sparing of normal tissues in

the robustly optimized plan as compared to PTV-based plans.

For limitations of space, we have included only illustrative

examples in this paper; however, we have conducted a robust

optimization study for 20 cancer patients including 9 H&N, 7

lung, and 4 prostate cancer patients. Results and conclusions

are consistent with those reported in this paper.

We acknowledge that our worst-case dose distribution

approaches used for optimization and evaluation of plans

has limitations; however, they are essentially analogous to

the use of PTV and PRV in IMRT. More sophisticated

approaches are possible but would require further research

and considerable increase in computational resources. In

such approaches, all uncertainties should be considered

simultaneously and sampled from distributions of uncertain-

ties. We expect to carry out these investigations. We also

expect to extend our methods to include intrafractional respi-

ratory motion. Inclusion of anatomic deformations and varia-

tions in positions of anatomic structures relative to each
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other in robust optimization is far more challenging and may

be of interest in the more distant future.

ACKNOWLEDGMENTS

The authors would like to thank Mr. Xiaoqiang Li for

helping to finalize the paper. This research is supported by

National Cancer Institute (NCI) grant P01CA021239, the

University Cancer Foundation via the Institutional Research

Grant program at the University of Texas MD Anderson

Cancer Center, and MD Anderson’s cancer center support

grant CA016672.

a)Author to whom correspondence should be addressed. Electronic mail:

wliu3@mdanderson.org
1S. P. Register, X. Zhang, R. Mohan, and J. Y. Chang, “Proton stereotactic

body radiation therapy for clinically challenging cases of centrally and

superiorly located stage I non-small-cell lung cancer,” Int. J. Radiat.

Oncol., Biol., Phys. 80, 1015–1022 (2010).
2X. D. Zhang, Y. P. Li, X. N. Pan, X. Q. Li, R. Mohan, R. Komaki, J. D.

Cox, and J. Y. Chang, “Intensity-modulated proton therapy reduces the

dose to normal tissue compared with intensity-modulated radiation therapy

or passive scattering proton therapy and enables individualized radical

raditherapy for extensive stage IIIB non-small-cell lung cancer: A virtual

clinical study,” Int. J. Radiat. Oncol., Biol., Phys. 77, 357–366 (2010).
3A. Lomax, “Intensity modulation methods for proton radiotherapy,” Phys.

Med. Biol. 44, 185 (1999).
4A. J. Lomax, “Intensity modulated proton therapy and its sensitivity to

treatment uncertainties 1: the potential effects of calculational

uncertainties,” Phys. Med. Biol. 53, 1027–1042 (2008).
5A. J. Lomax, “Intensity modulated proton therapy and its sensitivity to

treatment uncertainties 2: the potential effects of inter-fraction and inter-

field motions,” Phys. Med. Biol. 53, 1043–1056 (2008).
6A. J. Lomax, T. Boehringer, A. Coray, E. Egger, G. Goitein, M. Grossmann,

P. Juelke, S. Lin, E. Pedroni, B. Rohrer, W. Roser, B. Rossi, B. Siegenthaler,

O. Stadelmann, H. Stauble, C. Vetter, and L. Wisser, “Intensity modulated

proton therapy: A clinical example,” Med. Phys. 28, 317–324 (2001).
7D. Pflugfelder, J. J. Wilkens, and U. Oelfke, “Worst case optimization: a

method to account for uncertainties in the optimization of intensity modu-

lated proton therapy,” Phys. Med. Biol. 53, 1689–1700 (2008).
8J. Unkelbach, T. Bortfeld, B. C. Martin, and M. Soukup, “Reducing the

sensitivity of IMPT treatment plans to setup errors and range uncertainties

via probabilistic treatment planning,” Med. Phys. 36, 149–163 (2009).
9J. Unkelbach, T. C. Y. Chan, and T. Bortfeld, “Accounting for range

uncertainties in the optimization of intensity modulated proton therapy,”

Phys. Med. Biol. 52, 2755–2773 (2007).
10J. Unkelbach, M. Soukup, M. Alber, and T. Bortfeld, “Range setup and

dose calculation errors in IMPT and their interrelation,” World Congress

on Medical Physics and Biomedical Engineering, Vol. 25, pp. 900–903

(2009).
11Y. X. Kang, X. D. Zhang, J. Y. Chang, H. Wang, X. Wei, Z. X. Liao, R.

Komaki, J. D. Cox, P. A. Balter, H. Liu, X. R. Zhu, R. Mohan, and L.

Dong, “4D proton treatment planning strategy for mobile lung tumors,”

Int. J. Radiat. Oncol., Biol., Phys. 67, 906–914 (2007).
12D. Maleike, J. Unkelbach, and U. Oelfke, “Simulation and visualization of

dose uncertainties due to interfractional organ motion,” Phys. Med. Biol.

51, 2237–2252 (2006).
13X. D. Zhang, Y. P. Li, X. N. Pan, X. Q. Li, R. Mohan, R. Komaki, J. D.

Cox, and J. Y. Chang, “Intensity-modulated proton therapy reduces the

dose to normal tissue compared with intensity-modulated radiation therapy

or passive scattering proton therapy and enables individualized radical

radiotherapy for extensive stage IIIB non-small-cell lung cancer: a virtual

clinical study,” Int. J. Radiat. Oncol., Biol., Phys. 77, 357–366 (2010).
14S. B. Jiang, C. Pope, K. M. Al Jarrah, J. H. Kung, and T. Bortfeld, “An ex-

perimental investigation on intra-fractional organ motion effects in lung

IMRT treatments,” Phys. Med. Biol. 48, 1773–1784 (2003).
15J. Meyer, J. Bluett, R. Amos, L. Levy, S. Choi, Q. N. Nguyen, X. R. Zhu,

M. Gillin, and A. Lee, “Spot scanning proton beam therapy for prostate

cancer: Treatment planning technique and analysis of consequences of

rotational and translational alignment errors,” Int. J. Radiat. Oncol., Biol.,

Phys. 78, 428–434 (2010).
16A. Fredriksson, A. Forsgren, and B. Hardemark, “Minimax optimization

for handling range and setup uncertainties in proton therapy,” Med. Phys.

38, 1672–1684 (2011).
17U. Oelfke and T. Bortfeld, “Inverse planning for photon and proton

beams,” Med. Dosim. 26, 113–124 (2001).
18Q. W. Wu and R. Mohan, “Algorithms and functionality of an intensity

modulated radiotherapy optimization system,” Med. Phys. 27, 701–711

(2000).
19X. D. Zhang, H. Liu, X. C. Wang, L. Dong, Q. W. Wu, and R. Mohan,

“Speed and convergence properties of gradient algorithms for optimization

of IMRT,” Med. Phys. 31, 1141–1152 (2004).
20Y. Li, X. Zhang, and R. Mohan, “A hybrid inverse planning algorithm of

IMPT optimization,” Med. Phys. 35, 2867 (2008).
21Y. P. Li, X. D. Zhang, and R. Mohan, “An efficient dose calculation strat-

egy for intensity modulated proton therapy,” Phys. Med. Biol. 56,

N71–N84 (2011).
22F. Albertini, E. B. Hug, and L. A. J., “Is it necessary to plan with safety

margins for actively scanned proton therapy?,” Phys. Med. Biol. 56,

4399–4413 (2011).
23A. J. Lomax, E. Pedroni, H. Rutz, and G. Goitein, “The clinical potential

of intensity modulated proton therapy,” Z. Med. Phys. 14, 147–152

(2004).
24A. Trofimov, J. Kang, J. Unkelbach, J. A. Adams, X. Zhang, T. Bortfeld,

N. J. Liebsch, and T. F. DeLaney, “Evaluation of dosimetric gain and

uncertainties in proton therapy delivery with scanned pencil beam in treat-

ment of base-of-skull and spinal tumors,” Int. J. Radiat. Oncol., Biol.,

Phys. 78, S133–S134 (2010).

1091 Liu et al.: Robust optimization of IMPT 1091

Medical Physics, Vol. 39, No. 2, February 2012

http://dx.doi.org/10.1016/j.ijrobp.2010.03.012
http://dx.doi.org/10.1016/j.ijrobp.2010.03.012
http://dx.doi.org/10.1016/j.ijrobp.2009.04.028
http://dx.doi.org/10.1088/0031-9155/44/1/014
http://dx.doi.org/10.1088/0031-9155/44/1/014
http://dx.doi.org/10.1088/0031-9155/53/4/014
http://dx.doi.org/10.1088/0031-9155/53/4/015
http://dx.doi.org/10.1118/1.1350587
http://dx.doi.org/10.1088/0031-9155/53/6/013
http://dx.doi.org/10.1118/1.3021139
http://dx.doi.org/10.1088/0031-9155/52/10/009
http://dx.doi.org/10.1016/j.ijrobp.2006.10.045
http://dx.doi.org/10.1088/0031-9155/51/9/009
http://dx.doi.org/10.1016/j.ijrobp.2009.04.028
http://dx.doi.org/10.1088/0031-9155/48/12/307
http://dx.doi.org/10.1016/j.ijrobp.2009.07.1696
http://dx.doi.org/10.1016/j.ijrobp.2009.07.1696
http://dx.doi.org/10.1118/1.3556559
http://dx.doi.org/10.1016/S0958-3947(01)00057-7
http://dx.doi.org/10.1118/1.598932
http://dx.doi.org/10.1118/1.1688214
http://dx.doi.org/10.1118/1.2962355
http://dx.doi.org/10.1088/0031-9155/56/4/N03
http://dx.doi.org/10.1088/0031-9155/56/14/011
http://dx.doi.org/10.1016/j.ijrobp.2010.07.334
http://dx.doi.org/10.1016/j.ijrobp.2010.07.334

	s1
	s2
	s2A
	E1
	E2a
	E2b
	s2B
	T1
	s2C
	s3
	T2
	T2n1
	F1
	F2
	F3
	E3a
	E3b
	s4
	s4A
	F5
	F4
	F6
	F7
	T3
	T4
	s4B
	s4C
	s5
	cor1
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24

